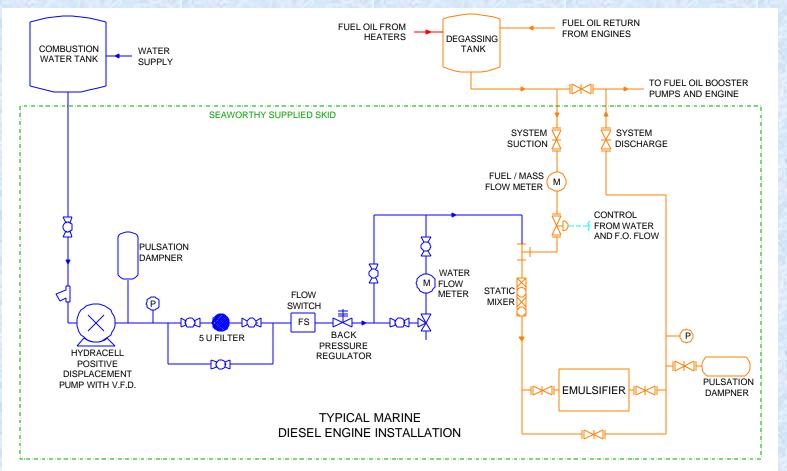
Containership Residual Fuel Homogenization and Emulsification Technology Overview

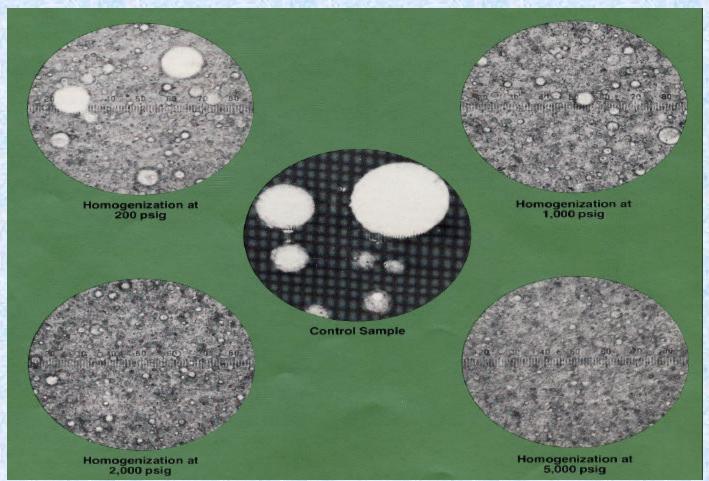
Presented by Matthew F. Winkler, Vice President, Seaworthy Systems, Inc.


The Maritime Administration's
Shipboard Energy Technologies Workshop
Sacramento, California
April 8, 2004

High Energy Water-in-Fuel Homogenization Emulsification (H/E) System

Typical Water-in-Fuel (H/E) System

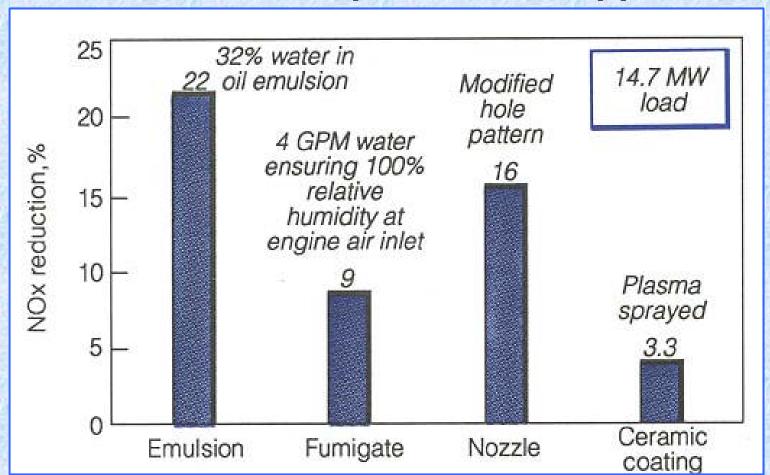
System Components


- Oil pump and integral homogenizer valve
- Static mixer
- Positive displacement water pump with VFD flow control
- PLC-based controls

Photomicrograph Comparisons of High-Energy Homogenization of Water-in-Fuel

Projected Effects of H/E System

Nitrogen Oxides (NOx)


- Peak temperature dependent, formed during combustion process
- Actual in service values can be 7-10% greater than test bed emissions
- Controlled emission levels vary directly with water flow
- 1% water-in-fuel yields approximately 1% reduction in NOx
- H/E demonstration project target goal = 25% reduction in NOx

Seaworthy's NO_X Reduction Data From Residual Oil Slow Speed Diesel Applications

Projected Effects of H/E System

Particulate Matter (PM)

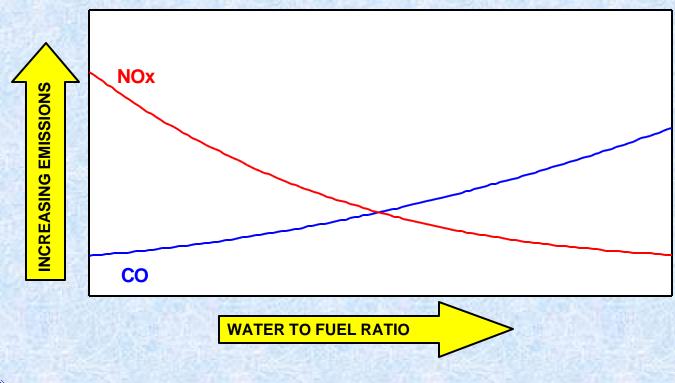
- Clumps of small particles of partially burned fuel and lube oil
- H/E reduces PM at low water-in-fuel ratios
- Increase in PM at higher ratios, but still invisible stack (opacity<5)

Methane and Non Methane Hydrocarbons (HC)

H/E reduces unburned hydrocarbons and odor

Carbon Dioxide (CO₂)

- Emission level varies directly with quantity of fuel burned
- 1% reduction in fuel yields approximately 1% reduction in CO₂



Projected Effects of H/E System

Carbon Monoxide (CO)

- Emission level varies directly with water-in-fuel ratio
- Balance between optimum water flow and emission levels to be determined during H/E demonstration project

Shipboard Design Considerations for Marine Residual Fuel H/E Applications

- Reserve capacity in the fuel oil injection pumps
- Procedures/modifications on the fuel oil system for starting or stopping on residual fuels and change-over to emulsified fuels
- Modifications to the Engine Control System
- Special adjustments to permit maneuvering
- Changes or adjustments to the bridge/engine telegraph
- Operation on residual fuels in open water and emulsified fuel in coastal areas (or operation on economy emulsions in open water)
- Operation on low sulfur fuels
- Suitability of H/E technology to both main and auxiliary diesel engines, ability to interface with several different OEMs

Statewide Emissions for a Typical West Coast - Hawaii Containership

Transiting main engine: 25 trips x 600 miles/trip x nm/1.15 mi. x hr/23 nm x 20,100 Kw x 17 g NOx/Kw-hr x lb/454 g x Ton/2000 lbs = **213 Tons NOx/yr**.

Transiting auxiliary engines: 25 trips x 600 miles/trip x nm/1.15 mi. x hr/23 nm x $2,000 \text{ Kw} \times 13 \text{ g NOx/Kw-hr} \times \text{lb/454 g x Ton/2000 lbs} =$ **16.2 Tons NOx/yr**.

Maneuvering main engine: 25 trips x 2 calls/trip x 1.9 hrs/call x 1,257 Kw x 19 g NOx/Kw-hr x lb/454 g x Ton/2000 lbs = 2.5 Tons NOx/yr.

Maneuvering auxiliary engines: 25 trips x 2 calls/trip x 1.9 hrs/call x 2,400 Kw x 13 g NOx/Kw-hr x lb/454 g x Ton/2000 lbs = **3.2 Tons NOx/yr**.

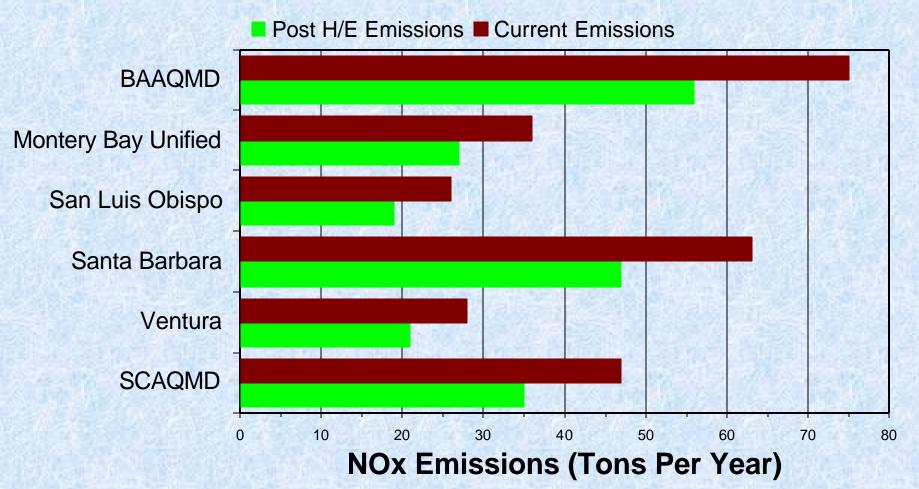
Hotelling: 25 trips x 2 calls/trip x 51.1 hrs/call x 1100 Kw x 13 g NOx/Kw-hr x lb/454 g x Ton/2000 lbs = **40.2 Tons NOx/yr**.

Total Emissions: 275 Tons NOx/yr.

H/E Target Goal = 25% reduction or approximately 70 Tons NOx

California Air Districts Affected by Typical Containership Coastal Transit

Estimated NO_x Emissions Reductions by District


District	Shipping Lane Miles per Trip	Emissions Reductions per Trip (tons)	Emissions Reductions per Year (tons)	Emissions Reductions, 5 Years (tons)
SCAQMD (Includes Long Beach, LA)	62	0.48	12	60
Ventura	74	0.28	7	35
Santa Barbara	165	0.64	16	80
San Luis Obispo	69	0.28	7	35
Monterey Bay Unified	95	0.36	9	45
BAAQMD (Includes San Francisco)	135	0.76	19	96
Total	600	2.8	70	350

Predicted Annual Emissions Reductions with Shipboard Emulsification and Homogenization

Projected Fuel and CO₂ Reductions

- There are no fuel or CO2 reductions with high water percentages
- Fuel and CO2 reductions of up to 3% are possible with economy emulsions

Containership Design Performance Fuel Consumption	per Voyage
---	------------

- 90% MCR (1.25 BBL/MI) Eastbound/Westbound
 5400 BBL
- 80% MCR (1.00 BBL/MI) Coastwise 600 BBL
- 3% fuel savings (excluding coastwise, man., dockside)
 162 BBL

Assuming a fuel cost of \$165 / MT this amounts to potential fuel savings of over \$100,000 per year

Shipboard H/E System Demonstration Project Estimated Cost Summary

Application engineering / preliminary design

\$40,000

H/E system design and fabrication

\$295,000

- Detail design
- Regulatory approvals
- Component purchasing
- Assembly/fabrication
- Design, operating and M&R documentation development
- Factory acceptance testing/shipping
- Start-up, commissioning and system tuning
- Training
- Reporting

Shipboard Demonstration Project Estimated Cost Summary, cont'd

H/E system installation

\$30,000

Emission testing

\$35,000

- Pre H/E system installation
- Post H/E system installation
- Reporting

Total estimated cost for H/E system

\$400,000

Note: Cost does not include contribution of operator in-kind services such as project management, port engineer supervision, shipboard labor (training, operation, maintenance), fuel for testing, consumable materials, and other direct costs (communications, drawings, reproduction, etc.)

Estimated Cost per Ton of NO_x Reduced

- Statewide annual emission reduction:
 - Approx. 70 tons per year
- Statewide cost-effectiveness:
 - Using 5 years, 3% interest rate
 - CRC = $i(1+i)^n/(1+i)^n 1 = 0.218$
 - Cost ~ \$400,000(0.218) = \$87,200
- CE = \$87,200 / 70 Ton (one year) = $\$1246/\text{Ton NO}_X \sim \$0.62/\text{ lb NO}_X$
- CE = \$87,200 / 350 Ton (five years) = $\$253/\text{Ton NO}_x \sim \$0.13 / \text{lb NO}_x$

Thank You for Your Kind Attention

